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Double integrals Introduction

Jordan measurable sets in R2

Consider the set of bounded intervals I of the form

(a, b), [a, b), (a, b], [a, b], where a, b ∈ R.

The cartesian product ∆ = I1 × I2 is a rectangle in R2.

The area of such a rectangle ∆ is defined by

area(∆) = length(I1) · length(I2).

Consider the set P of all finite reunions of rectangles ∆:

P ∈ P iff. ∃ ∆1,∆2, ...,∆n s. t. P =

n⋃
i=1

∆i.

If P1, P2 ∈ P, then P1 ∪ P2 ∈ P and P1 \ P2 ∈ P.

Any P ∈ P can be written as the union of disjoint rectangles
∆1,∆2, ...,∆n (∆i ∩∆j = ∅ if i 6= j):

P =

n⋃
i=1

∆i
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Double integrals Introduction

Jordan measurable sets in R2

The area of a set P ∈ P is

area(P ) =

n∑
i=1

area(∆i), where P =

n⋃
i=1

∆i and ∆1,∆2, ...,∆n are disjoint.

The area defined in this way satisfies:

area(P ) > 0 for any P ∈ P.

if P1, P2 ∈ P and P1 ∩ P2 = ∅, then

area(P1 ∪ P2) = area(P1) + area(P2).

area(P ) is independent on the decomposition of the set P in a finite
union of disjoint rectangles.
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Double integrals Introduction

Jordan measurable sets in R2

For a bounded set A ⊂ R2, we define

areai(A) = sup
P⊂A,P∈P

area(P ) and areae(A) = inf
P⊃A,P∈P

area(P )

A bounded set A ⊂ R2 is called Jordan measurable if

areai(A) = areae(A).

The area of a Jordan measurable set A ⊂ R2 is defined as

area(A) = areai(A) = areae(A)

If A1, A2 are Jordan measurable, then so are A1 ∪A2 and A1 \A2.

If A1 ∩A2 = ∅, then

area(A1 ∪A2) = area(A1) + area(A2).
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Double integrals Introduction

Riemann-Darboux integral of two variable functions

Consider a bounded and Jordan measurable set A ⊂ R2.

A partition P of A is a finite set of disjoint Jordan measurable subsets Ai,
i = 1, n of A satisfying:

n⋃
i=1

Ai = A.

The diameter of a set Ai is

d(Ai) = max
(x′,y′),(x′′,y′′)∈Ai

√
(x′ − x′′)2 + (y′ − y′′)2

The norm of the partition P is

ν(P ) = max{d(A1), d(A2), · · · , d(An)}.
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Double integrals Definition

Darboux and Riemann sums
Let f : A→ R1 be a bounded function. Then f is bounded on each part Ai
and has a least upper bound Mi and a greatest lower bound mi on Ai.

The upper Darboux sum of f with respect to the partition P is

Uf (P ) =

n∑
i=1

Mi · area(Ai), where Mi = sup{f(x, y) | (x, y) ∈ Ai}.

The lower Darboux sum of f with respect to the partition P is

Lf (P ) =

n∑
i=1

mi · area(Ai), where mi = inf{f(x, y) | (x, y) ∈ Ai}.

The Riemann sum of f with respect to the partition P is

σf (P ) =

n∑
i=1

f(ξi, ηi) · area(Ai) where (ξi, ηi) ∈ Ai.

The following inequalities hold

Lf (P ) ≤ σf (P ) ≤ Uf (P ).
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Double integrals Definition

Riemann-Darboux integral of two variable functions
Consider the numbers m and M such that m ≤ f(x, y) ≤M for all (x, y) ∈ A.

m·area(A) = m·
n∑
i=1

area(Ai) ≤ Lf (P ) ≤ Uf (P ) ≤M ·
n∑
i=1

area(Ai) = M ·area(A)

Hence, the following sets are bounded:

Lf = {Lf (P ) |P is a partition of A}
Uf = {Uf (P ) |P is a partition of A}

We can therefore consider Lf = sup
P
Lf and Uf = inf

P
Uf .

If the function f is defined and bounded on A, then

Lf ≤ Uf .
The function f is Riemann-Darboux integrable on A if

Lf = Uf :=

∫∫
A

f(x, y) dx dy

︸ ︷︷ ︸
double integral of f on A
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Double integrals Definition

Riemann-Darboux integral of a two-variable function
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Double integrals Properties

Classes of Riemann-Darboux integrable functions

If f is continuous a Jordan measurable set A, then f is Riemann-Darboux
integrable on A.

A function f is called piecewise-continuous on A if there exists a partition
P = {A1, · · · , An} of A and continuous functions fi, i = 1, n defined on Ai
such that f(x) = fi(x) for x ∈ Int(Ai).

A piecewise-continuous function is Riemann-Darboux integrable and∫∫
A

f(x, y) dx dy =

n∑
i=1

∫∫
Ai

fi(x, y) dx dy.
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Double integrals Properties

Properties of the Riemann-Darboux integral
If f and g are Riemann-Darboux integrable on A, then all the integrals below
exist and the following hold:

∫∫
A

[αf(x, y) + βg(x, y)] dxdy = α

∫∫
A

f(x, y)dxdy+β

∫∫
A

g(x, y)dxdy, ∀α, β ∈ R1

∫∫
A

f(x, y)dxdy=

∫∫
A1

f(x, y)dxdy+

∫∫
A2

f(x, y)dxdy whereA1∪A2 = A,A1∩A2 = ∅

if f(x, y) ≤ g(x, y) on A, then
∫∫
A

f(x, y) dx dy ≤
∫∫
A

g(x, y) dx dy

The mean value theorem:
If f : A→ R1 is integrable on A and m ≤ f(x, y) ≤M for any (x, y) ∈ A, then:

m · area(A) ≤
∫∫
A

f(x, y) dx dy ≤M · area(A).
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Double integrals Double integral on a rectangle

Double integral on a rectangle

Theorem (Fubini’s Theorem)

Assume that A is a rectangle, A = [a, b]× [c, d] and f : A→ R1 is a
continuous function. Then:

∫∫
A

f(x, y) dx dy =

b∫
a

 d∫
c

f(x, y) dy

 dx =

d∫
c

 b∫
a

f(x, y) dx

 dy

=⇒ the computation of a double integral on a rectangular domain reduces to
the computation of two successive (or iterated) single-variable integrals.

Example. If A = [0, 2]× [1, 3] then∫∫
A

(x− 3y2)dxdy =

∫ 2

0

∫ 3

1

(x− 3y2)dy dx =

∫ 2

0

(xy − y3)
∣∣∣y=3

y=1
dx

=

∫ 2

0

(2x− 26)dx = (x2 − 26x)
∣∣∣x=2

x=0
= −48.
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Double integrals Double integral over general regions

Double integrals over general regions: type I regions
A region D ⊂ R2 is said to be of type I if it lies between the graphs of two
continuous functions of x, that is:

D = {(x, y) ∈ R2 : a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x)}
where g1, g2 are continuous and g1(x) ≤ g2(x) for every x ∈ [a, b].

For a continuous function f : D → R1 we have:∫∫
D

f(x, y) dx dy =

b∫
a

g2(x)∫
g1(x)

f(x, y) dy dx

EVA KASLIK Calculus - Lecture 11 13 / 23



Double integrals Double integral over general regions

Example: double integral over a type I region
Considering the function f(x, y) = x+ 2y defined on the type I region D
bounded by the parabolas y = 2x2 and y = 1 + x2, we can write:

D = {(x, y) ∈ R2 : −1 ≤ x ≤ 1 and 2x2 ≤ y ≤ 1 + x2}

∫∫
D

(x+ 2y)dxdy =

=

∫ 1

−1

1+x2∫
2x2

(x+ 2y)dy dx =

=

∫ 1

−1
(xy + y2)

∣∣∣y=1+x2

y=2x2
dx =

=

∫ 1

−1

[
x(1− x2) + (1 + x2)2 − (2x2)2

]
dx =

=

∫ 1

−1
(1 + x+ 2x2 − x3 − 3x4)dx =

32

15
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Double integrals Double integral over general regions

Double integrals over general regions: type II regions

A region D ⊂ R2 is said to be of type II if it can be
expressed as:

D = {(x, y) ∈ R2 : c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y)}

where h1, h2 are continuous and h1(y) ≤ h2(y) for
every y ∈ [c, d].

For a continuous function f : D → R1 we have:

∫∫
D

f(x, y) dx dy =

d∫
c

h2(y)∫
h1(y)

f(x, y) dx dy
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Double integrals Double integral over general regions

Example: double integral over a type II region
Find the volume of the solid that lies under the paraboloid z = x2 + y2 and
above the region D in the xy-plane bounded by the line y = 2x and the
parabola y = x2.

D = {(x, y) ∈ R2 : 0 ≤ x ≤ 2 and x2 ≤ y ≤ 2x} or

D = {(x, y) ∈ R2 : 0 ≤ y ≤ 4 and
1

2
y ≤ x ≤ √y}
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Double integrals Double integral over general regions

Example: double integral over a type II region

Find the volume of the solid that lies under the paraboloid z = x2 + y2 and
above the region D in the xy-plane bounded by the line y = 2x and the
parabola y = x2.

We chose to express the region D as a type II region:

D = {(x, y) ∈ R2 : 0 ≤ y ≤ 4 and
1

2
y ≤ x ≤ √y}

The volume can be computed as

V =

∫∫
D

f(x, y)dxdy =

∫∫
D

(x2 + y2)dxdy =

4∫
0

√
y∫

y/2

(x2 + y2)dx dy =

=

4∫
0

(
1

3
x3 + xy2

) ∣∣∣x=√y
x=y/2

dy =

4∫
0

(
y3/2

3
− y3

24
+ y5/2 − y3

2

)
dy =

216

35
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Double integrals Change of variables

Change of variables in double integrals

Theorem

If A,B ⊂ R2 are Jordan measurable sets, T : B → A is a bijection such that T
and T−1 have continuous partial derivatives and f : A→ R1 is an integrable
function, then the following equality holds:∫∫

A

f(x, y) dx dy =

∫∫
B

f(x(ξ, η), y(ξ, η))

∣∣∣∣∣ ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣ dξ dη
In the above theorem, the changes of variables are:{

x = x(ξ, η)

y = y(ξ, η)
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Double integrals Change of variables

Double integrals in polar coordinates
The polar coordinates (r, θ) of a point P of
the R2 plane are related to the rectangular
(cartesian) coordinates (x, y) as:{

x = r cos θ

y = r sin θ
, r ≥ 0, θ ∈ [0, 2π]

Examples:
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Double integrals Change of variables

Double integrals in polar coordinates

Change of variables to polar coordinates in a double integral:

With the change of variables{
x = r cos θ

y = r sin θ
, (r, θ) ∈ R

we can compute:∫∫
D

f(x, y) dx dy =

∫∫
R

f(r cos θ, r sin θ) r dr dθ

where D is the region for cartesian coordinates and R is the corresponding
region for the polar coordinates.∣∣∣∣ ∂x

∂r
∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r !
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Double integrals Change of variables

Double integrals in polar coordinates: example
Find the volume of the solid bounded by the plane z = 0 and the paraboloid
z = 1− x2 − y2.

Intersection of paraboloid with xy-plane:

x2 + y2 = 1.

The solid lies above the disk:

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

Region in polar coordinates - rectangle:

R = {(r, θ) : r ∈ [0, 1], θ ∈ [0, 2π]}

V =

∫∫
D

f(x, y)dxdy =

∫∫
D

(1− x2 − y2)dxdy =

∫∫
R

(1− r2)r dr dθ =

=

∫ 2π

0

∫ 1

0

(r − r3)dr dθ =

∫ 2π

0

(
r2

2
− r4

4

) ∣∣∣r=1

r=0
dθ = 2π

1

4
=
π

2
.
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Double integrals Applications

Applications of double integrals

computing volumes: V =

∫∫
D

f(x, y)dxdy

density and mass: the mass of a lamina occupying the region D and
having density function ρ(x, y) is

m =

∫∫
D

ρ(x, y)dxdy

center of mass: the coordinates (x̄, ȳ) of the center of mass of a lamina
occupying the region D and having density function ρ(x, y) are

x̄ =
1

m

∫∫
D

xρ(x, y)dxdy ȳ =
1

m

∫∫
D

yρ(x, y)dxdy
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Double integrals Applications

Applications of double integrals
computing surface areas: the area of the surface with equation
z = f(x, y), (x, y) ∈ D, where fx and fy are continuous is:

A(S) =

∫∫
D

√
fx(x, y)2 + fy(x, y)2 + 1 dx dy

Example: Find the area of the part of the paraboloid z = x2 + y2 that lies
under the plane z = 9.

D = {(x, y) ∈ R2 : x2+y2 ≤ 9} −→ R = [0, 3]×[0, 2π] for polar coordinates

A(S) =

∫∫
D

√
(2x)2 + (2y)2 + 1 dx dy =

=

∫∫
D

√
4(x2 + y2) + 1 dx dy

=

∫∫
R

√
4r2 + 1 · r dr dθ =

= 2π
1

8

2

3
(4r2 + 1)3/2

∣∣∣r=3

r=0
=
π

6
(37
√

37− 1)
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