Calculus - Lecture 11

Double integrals.

EVA KASLIK

Double integrals

Jordan measurable sets in \mathbb{R}^{2}

Consider the set of bounded intervals I of the form

$$
(a, b),[a, b),(a, b],[a, b], \quad \text { where } a, b \in \mathbb{R} .
$$

The cartesian product $\Delta=I_{1} \times I_{2}$ is a rectangle in \mathbb{R}^{2}.
The area of such a rectangle Δ is defined by

$$
\operatorname{area}(\Delta)=\text { length }\left(I_{1}\right) \cdot \text { length }\left(I_{2}\right)
$$

Consider the set \mathcal{P} of all finite reunions of rectangles Δ :

$$
P \in \mathcal{P} \quad \text { iff. } \quad \exists \Delta_{1}, \Delta_{2}, \ldots, \Delta_{n} \text { s. t. } P=\bigcup_{i=1}^{n} \Delta_{i} .
$$

- If $P_{1}, P_{2} \in \mathcal{P}$, then $P_{1} \cup P_{2} \in \mathcal{P}$ and $P_{1} \backslash P_{2} \in \mathcal{P}$.
- Any $P \in \mathcal{P}$ can be written as the union of disjoint rectangles $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}\left(\Delta_{i} \cap \Delta_{j}=\emptyset\right.$ if $\left.i \neq j\right)$:

$$
P=\bigcup_{i=1}^{n} \Delta_{i}
$$

Jordan measurable sets in \mathbb{R}^{2}

The area of a set $P \in \mathcal{P}$ is
$\operatorname{area}(P)=\sum_{i=1}^{n} \operatorname{area}\left(\Delta_{i}\right), \quad$ where $P=\bigcup_{i=1}^{n} \Delta_{i}$ and $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}$ are disjoint.
The area defined in this way satisfies:

- area $(P)>0$ for any $P \in \mathcal{P}$.
- if $P_{1}, P_{2} \in \mathcal{P}$ and $P_{1} \cap P_{2}=\emptyset$, then

$$
\operatorname{area}\left(P_{1} \cup P_{2}\right)=\operatorname{area}\left(P_{1}\right)+\operatorname{area}\left(P_{2}\right) .
$$

- $\operatorname{area}(P)$ is independent on the decomposition of the set P in a finite union of disjoint rectangles.

Jordan measurable sets in \mathbb{R}^{2}

For a bounded set $A \subset \mathbb{R}^{2}$, we define

$$
\operatorname{area}_{i}(A)=\sup _{P \subset A, P \in \mathcal{P}} \operatorname{area}(P) \quad \text { and } \quad \operatorname{area}_{e}(A)=\inf _{P \supset A, P \in \mathcal{P}} \operatorname{area}(P)
$$

A bounded set $A \subset \mathbb{R}^{2}$ is called Jordan measurable if

$$
\operatorname{area}_{i}(A)=\operatorname{area}_{e}(A) .
$$

The area of a Jordan measurable set $A \subset \mathbb{R}^{2}$ is defined as

$$
\operatorname{area}(A)=\operatorname{area}_{i}(A)=\operatorname{area}_{e}(A)
$$

- If A_{1}, A_{2} are Jordan measurable, then so are $A_{1} \cup A_{2}$ and $A_{1} \backslash A_{2}$.
- If $A_{1} \cap A_{2}=\emptyset$, then

$$
\operatorname{area}\left(A_{1} \cup A_{2}\right)=\operatorname{area}\left(A_{1}\right)+\operatorname{area}\left(A_{2}\right) .
$$

Riemann-Darboux integral of two variable functions

Consider a bounded and Jordan measurable set $A \subset \mathbb{R}^{2}$.
A partition P of A is a finite set of disjoint Jordan measurable subsets A_{i}, $i=\overline{1, n}$ of A satisfying:

$$
\bigcup_{i=1}^{n} A_{i}=A .
$$

The diameter of a set A_{i} is

$$
d\left(A_{i}\right)=\max _{\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in A_{i}} \sqrt{\left(x^{\prime}-x^{\prime \prime}\right)^{2}+\left(y^{\prime}-y^{\prime \prime}\right)^{2}}
$$

The norm of the partition P is

$$
\nu(P)=\max \left\{d\left(A_{1}\right), d\left(A_{2}\right), \cdots, d\left(A_{n}\right)\right\}
$$

Darboux and Riemann sums

Let $f: A \rightarrow \mathbb{R}^{1}$ be a bounded function. Then f is bounded on each part A_{i} and has a least upper bound M_{i} and a greatest lower bound m_{i} on A_{i}.
The upper Darboux sum of f with respect to the partition P is

$$
U_{f}(P)=\sum_{i=1}^{n} M_{i} \cdot \operatorname{area}\left(A_{i}\right), \quad \text { where } M_{i}=\sup \left\{f(x, y) \mid(x, y) \in A_{i}\right\}
$$

The lower Darboux sum of f with respect to the partition P is

$$
L_{f}(P)=\sum_{i=1}^{n} m_{i} \cdot \operatorname{area}\left(A_{i}\right), \quad \text { where } m_{i}=\inf \left\{f(x, y) \mid(x, y) \in A_{i}\right\}
$$

The Riemann sum of f with respect to the partition P is

$$
\sigma_{f}(P)=\sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \cdot \operatorname{area}\left(A_{i}\right) \quad \text { where }\left(\xi_{i}, \eta_{i}\right) \in A_{i}
$$

The following inequalities hold

$$
L_{f}(P) \leq \sigma_{f}(P) \leq U_{f}(P) .
$$

Riemann-Darboux integral of two variable functions

Consider the numbers m and M such that $m \leq f(x, y) \leq M$ for all $(x, y) \in A$.
$m \cdot \operatorname{area}(A)=m \cdot \sum_{i=1}^{n} \operatorname{area}\left(A_{i}\right) \leq L_{f}(P) \leq U_{f}(P) \leq M \cdot \sum_{i=1}^{n} \operatorname{area}\left(A_{i}\right)=M \cdot \operatorname{area}(A)$
Hence, the following sets are bounded:

$$
\begin{aligned}
& L_{f}=\left\{L_{f}(P) \mid P \text { is a partition of } A\right\} \\
& U_{f}=\left\{U_{f}(P) \mid P \text { is a partition of } A\right\}
\end{aligned}
$$

We can therefore consider $\mathcal{L}_{f}=\sup _{P} L_{f}$ and $\mathcal{U}_{f}=\inf _{P} U_{f}$.
If the function f is defined and bounded on A, then

$$
\mathcal{L}_{f} \leq \mathcal{U}_{f}
$$

The function f is Riemann-Darboux integrable on A if

$$
\mathcal{L}_{f}=\mathcal{U}_{f}:=\underbrace{\iint_{A} f(x, y) d x d y}_{\text {double integral of } f \text { on } A}
$$

Riemann-Darboux integral of a two-variable function

Classes of Riemann-Darboux integrable functions

If f is continuous a Jordan measurable set A, then f is Riemann-Darboux integrable on A.

A function f is called piecewise-continuous on A if there exists a partition $P=\left\{A_{1}, \cdots, A_{n}\right\}$ of A and continuous functions $f_{i}, i=\overline{1, n}$ defined on A_{i} such that $f(x)=f_{i}(x)$ for $x \in \operatorname{Int}\left(A_{i}\right)$.

A piecewise-continuous function is Riemann-Darboux integrable and

$$
\iint_{A} f(x, y) d x d y=\sum_{i=1}^{n} \iint_{A_{i}} f_{i}(x, y) d x d y .
$$

Properties of the Riemann-Darboux integral

If f and g are Riemann-Darboux integrable on A, then all the integrals below exist and the following hold:
$\iint_{A}[\alpha f(x, y)+\beta g(x, y)] d x d y=\alpha \iint_{A} f(x, y) d x d y+\beta \iint_{A} g(x, y) d x d y, \forall \alpha, \beta \in \mathbb{R}^{1}$
$\iint_{A} f(x, y) d x d y=\iint_{A_{1}} f(x, y) d x d y+\iint_{A_{2}} f(x, y) d x d y$ where $A_{1} \cup A_{2}=A, A_{1} \cap A_{2}=\emptyset$

$$
\text { if } f(x, y) \leq g(x, y) \text { on } A \text {, then } \iint_{A} f(x, y) d x d y \leq \iint_{A} g(x, y) d x d y
$$

The mean value theorem:
If $f: A \rightarrow \mathbb{R}^{1}$ is integrable on A and $m \leq f(x, y) \leq M$ for any $(x, y) \in A$, then:

$$
m \cdot \operatorname{area}(A) \leq \iint_{A} f(x, y) d x d y \leq M \cdot \operatorname{area}(A)
$$

Double integral on a rectangle

Theorem (Fubini's Theorem)

Assume that A is a rectangle, $A=[a, b] \times[c, d]$ and $f: A \rightarrow \mathbb{R}^{1}$ is a continuous function. Then:

$$
\iint_{A} f(x, y) d x d y=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

\Longrightarrow the computation of a double integral on a rectangular domain reduces to the computation of two successive (or iterated) single-variable integrals.

Example. If $A=[0,2] \times[1,3]$ then

$$
\begin{aligned}
\iint_{A}\left(x-3 y^{2}\right) d x d y & =\int_{0}^{2} \int_{1}^{3}\left(x-3 y^{2}\right) d y d x=\left.\int_{0}^{2}\left(x y-y^{3}\right)\right|_{y=1} ^{y=3} d x \\
& =\int_{0}^{2}(2 x-26) d x=\left.\left(x^{2}-26 x\right)\right|_{x=0} ^{x=2}=-48
\end{aligned}
$$

Double integrals over general regions: type I regions

A region $D \subset \mathbb{R}^{2}$ is said to be of type I if it lies between the graphs of two continuous functions of x, that is:

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b \text { and } g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

where g_{1}, g_{2} are continuous and $g_{1}(x) \leq g_{2}(x)$ for every $x \in[a, b]$.

For a continuous function $f: D \rightarrow \mathbb{R}^{1}$ we have:

$$
\iint_{D} f(x, y) d x d y=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Example: double integral over a type I region

Considering the function $f(x, y)=x+2 y$ defined on the type I region D bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$, we can write:

$$
D=\left\{(x, y) \in \mathbb{R}^{2}:-1 \leq x \leq 1 \text { and } 2 x^{2} \leq y \leq 1+x^{2}\right\}
$$

$$
\begin{aligned}
& \iint_{D}(x+2 y) d x d y= \\
& =\int_{-1}^{1} \int_{2 x^{2}}^{1+x^{2}}(x+2 y) d y d x= \\
& =\left.\int_{-1}^{1}\left(x y+y^{2}\right)\right|_{y=2 x^{2}} ^{y=1+x^{2}} d x= \\
& =\int_{-1}^{1}\left[x\left(1-x^{2}\right)+\left(1+x^{2}\right)^{2}-\left(2 x^{2}\right)^{2}\right] d x=\frac{(-1,2)^{2}}{1}\left(1+x+2 x^{2}-x^{3}-3 x^{4}\right) d x=\frac{32}{15} \\
& =\int_{-1}^{1}
\end{aligned}
$$

Double integrals over general regions: type II regions

A region $D \subset \mathbb{R}^{2}$ is said to be of type II if it can be expressed as:
$D=\left\{(x, y) \in \mathbb{R}^{2}: c \leq y \leq d\right.$ and $\left.h_{1}(y) \leq x \leq h_{2}(y)\right\}$
where h_{1}, h_{2} are continuous and $h_{1}(y) \leq h_{2}(y)$ for every $y \in[c, d]$.

For a continuous function $f: D \rightarrow \mathbb{R}^{1}$ we have:

$$
\iint_{D} f(x, y) d x d y=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Example: double integral over a type II region

Find the volume of the solid that lies under the paraboloid $z=x^{2}+y^{2}$ and above the region D in the $x y$-plane bounded by the line $y=2 x$ and the parabola $y=x^{2}$.

$$
\begin{gathered}
D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 2 \text { and } x^{2} \leq y \leq 2 x\right\} \quad \text { or } \\
D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq 4 \text { and } \frac{1}{2} y \leq x \leq \sqrt{y}\right\}
\end{gathered}
$$

Example: double integral over a type II region

Find the volume of the solid that lies under the paraboloid $z=x^{2}+y^{2}$ and above the region D in the $x y$-plane bounded by the line $y=2 x$ and the parabola $y=x^{2}$.

We chose to express the region D as a type II region:

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq 4 \text { and } \frac{1}{2} y \leq x \leq \sqrt{y}\right\}
$$

The volume can be computed as

$$
\begin{aligned}
V & =\iint_{D} f(x, y) d x d y=\iint_{D}\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{4} \int_{y / 2}^{\sqrt{y}}\left(x^{2}+y^{2}\right) d x d y= \\
& =\left.\int_{0}^{4}\left(\frac{1}{3} x^{3}+x y^{2}\right)\right|_{x=y / 2} ^{x=\sqrt{y}} d y=\int_{0}^{4}\left(\frac{y^{3 / 2}}{3}-\frac{y^{3}}{24}+y^{5 / 2}-\frac{y^{3}}{2}\right) d y=\frac{216}{35}
\end{aligned}
$$

Change of variables in double integrals

Theorem
If $A, B \subset \mathbb{R}^{2}$ are Jordan measurable sets, $T: B \rightarrow A$ is a bijection such that T and T^{-1} have continuous partial derivatives and $f: A \rightarrow \mathbb{R}^{1}$ is an integrable function, then the following equality holds:

$$
\iint_{A} f(x, y) d x d y=\iint_{B} f(x(\xi, \eta), y(\xi, \eta))\left|\begin{array}{cc}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right| d \xi d \eta
$$

In the above theorem, the changes of variables are:

$$
\left\{\begin{array}{l}
x=x(\xi, \eta) \\
y=y(\xi, \eta)
\end{array}\right.
$$

Double integrals in polar coordinates

The polar coordinates (r, θ) of a point P of the \mathbb{R}^{2} plane are related to the rectangular (cartesian) coordinates (x, y) as:

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array} \quad, r \geq 0, \theta \in[0,2 \pi]\right.
$$

Examples:

(a) $R=\{(r, \theta) \mid 0 \leqslant r \leqslant 1,0 \leqslant \theta \leqslant 2 \pi\} \quad$ (b) $R=\{(r, \theta) \mid 1 \leqslant r \leqslant 2,0 \leqslant \theta \leqslant \pi\}$

Double integrals in polar coordinates

Change of variables to polar coordinates in a double integral:
With the change of variables

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array} \quad,(r, \theta) \in R\right.
$$

we can compute:

$$
\iint_{D} f(x, y) d x d y=\iint_{R} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

where D is the region for cartesian coordinates and R is the corresponding region for the polar coordinates.

$$
\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r!
$$

Double integrals in polar coordinates: example

Find the volume of the solid bounded by the plane $z=0$ and the paraboloid $z=1-x^{2}-y^{2}$.

Intersection of paraboloid with $x y$-plane:

$$
x^{2}+y^{2}=1
$$

The solid lies above the disk:

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}
$$

Region in polar coordinates - rectangle:

$$
\begin{aligned}
& R=\{(r, \theta): r \in[0,1], \theta \in[0,2 \pi]\} \\
V & =\iint_{D} f(x, y) d x d y=\iint_{D}\left(1-x^{2}-y^{2}\right) d x d y=\iint_{R}\left(1-r^{2}\right) r d r d \theta= \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(r-r^{3}\right) d r d \theta=\left.\int_{0}^{2 \pi}\left(\frac{r^{2}}{2}-\frac{r^{4}}{4}\right)\right|_{r=0} ^{r=1} d \theta=2 \pi \frac{1}{4}=\frac{\pi}{2} .
\end{aligned}
$$

Applications of double integrals

- computing volumes: $V=\iint_{D} f(x, y) d x d y$
- density and mass: the mass of a lamina occupying the region D and having density function $\rho(x, y)$ is

$$
m=\iint_{D} \rho(x, y) d x d y
$$

- center of mass: the coordinates (\bar{x}, \bar{y}) of the center of mass of a lamina occupying the region D and having density function $\rho(x, y)$ are

$$
\bar{x}=\frac{1}{m} \iint_{D} x \rho(x, y) d x d y \quad \bar{y}=\frac{1}{m} \iint_{D} y \rho(x, y) d x d y
$$

Applications of double integrals

- computing surface areas: the area of the surface with equation $z=f(x, y),(x, y) \in D$, where f_{x} and f_{y} are continuous is:

$$
A(S)=\iint_{D} \sqrt{f_{x}(x, y)^{2}+f_{y}(x, y)^{2}+1} d x d y
$$

Example: Find the area of the part of the paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=9$.
$D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 9\right\} \quad \longrightarrow \quad R=[0,3] \times[0,2 \pi]$ for polar coordinates

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{(2 x)^{2}+(2 y)^{2}+1} d x d y= \\
& =\iint_{D} \sqrt{4\left(x^{2}+y^{2}\right)+1} d x d y \\
& =\iint_{R} \sqrt{4 r^{2}+1} \cdot r d r d \theta= \\
& =\left.2 \pi \frac{1}{8} \frac{2}{3}\left(4 r^{2}+1\right)^{3 / 2}\right|_{r=0} ^{r=3}=\frac{\pi}{6}(37 \sqrt{37}-1)
\end{aligned}
$$

